Time Travel Into the Future If you want to advance through the years a little faster than the next person, you'll need to exploit space-time. Global positioning
satellites pull this off every day, accruing an extra third-of-a-billionth of a second daily. Time passes faster in orbit, because satellites are farther away from the mass of the Earth. Down here on the surface, the planet's mass drags on time and slows it down in small measures.
We call this effect gravitational time dilation. According to Einstein's theory of general relativity, gravity is a curve in space-time and astronomers regularly observe this phenomenon when they study light moving near a sufficiently massive object. Particularly large suns, for instance, can cause an otherwise straight beam of light to curve in what we call the
gravitational lensing effect.
What does this have to do with time? Remember: Any event that occurs in the universe has to involve both space and time. Gravity doesn't just pull on space; it also pulls on time.
You wouldn't be able to notice minute changes in the flow of time, but a sufficiently massive object would make a huge difference -- say, like the supermassive
black hole Sagittarius A at the center of our galaxy. Here, the mass of 4 million suns exists as a single, infinitely dense point, known as a
singularity [source:
NASA]. Circle this black hole for a while (without falling in) and you'd experience time at half the Earth rate. In other words, you'd round out a five-year journey to discover an entire decade had passed on Earth [source:
Davies].
Speed also plays a role in the rate at which we experience time. Time passes more slowly the closer you approach the unbreakable cosmic speed limit we call the speed of light. For instance, the hands of a clock in a speeding train move more slowly than those of a stationary clock. A human passenger wouldn't feel the difference, but at the end of the trip the speeding clock would be slowed by billionths of a second. If such a train could attain 99.999 percent of light speed, only one year would pass onboard for every 223 years back at the train station [source:
Davies].In effect, this hypothetical commuter would have traveled into the future. But what about the past? Could the fastest starship imaginable turn back the clock?
Time Travel Into the Past We've established that
time travel into the future happens all the time. Scientists have proven it in experiments, and the idea is a fundamental aspect of Einstein's theory of
relativity. You'll make it to the future; it's just a question of how fast the trip will be. But what about travel into the past? A glance into the night sky should supply an answer.
The Milky Way galaxy is roughly 100,000 light-years wide, so light from its more distant stars can take thousands upon thousands of years to reach Earth. Glimpse that light, and you're essentially looking back in time. When astronomers measure the cosmic microwave background radiation, they stare back more than 10 billion years into a primordial cosmic age. But can we do better than this?
There's nothing in Einstein's theory that precludes
time travel into the past, but the very premise of pushing a button and going back to yesterday violates the
law of causality, or cause and effect. One event happens in our universe, and it leads to yet another in an endless one-way string of events. In every instance, the cause occurs before the effect. Just try to imagine a different reality, say, in which a murder victim dies of his or her gunshot wound before being shot. It violates reality as we know it; thus, many scientists dismiss time travel into the past as an impossibility.
Some scientists have proposed the idea of using faster-than-light travel to journey back in time. After all, if time slows as an object approaches the speed of
light, then might exceeding that speed cause time to flow backward? Of course, as an object nears the speed of light, its relativistic mass increases until, at the speed of light, it becomes infinite. Accelerating an infinite mass any faster than that is impossible. Warp speed technology could theoretically cheat the universal speed limit by propelling a bubble of space-time across the universe, but even this would come with colossal, far-future energy costs.
But what if time travel into the past and future depends less on speculative space propulsion technology and more on existing cosmic phenomena? Set a course for the black hole.